原题
Sorting a Three-Valued Sequence
IOI’96 – Day 2
Sorting is one of the most frequently performed computational tasks. Consider the special sorting problem in which the records to be sorted have at most three different key values. This happens for instance when we sort medalists of a competition according to medal value, that is, gold medalists come first, followed by silver, and bronze medalists come last.
In this task the possible key values are the integers 1, 2 and 3. The required sorting order is non-decreasing. However, sorting has to be accomplished by a sequence of exchange operations. An exchange operation, defined by two position numbers p and q, exchanges the elements in positions p and q.
You are given a sequence of key values. Write a program that computes the minimal number of exchange operations that are necessary to make the sequence sorted.
PROGRAM NAME: sort3
INPUT FORMAT
Line 1:
N (1 <= N <= 1000), the number of records to be sorted
Lines 2-N+1:
A single integer from the set {1, 2, 3}
SAMPLE INPUT (file sort3.in)
9 2 2 1 3 3 3 2 3 1
OUTPUT FORMAT
A single line containing the number of exchanges required
SAMPLE OUTPUT (file sort3.out)
4
懒得自己翻译了,从NOCOW上找翻译贴下来。(P.S. NOCOW这个名字起的还真好啊)
三值的排序
IOI’96 – Day 2
译 by !Starliu
排序是一种很频繁的计算任务。现在考虑最多只有三值的排序问题。一个实际的例子是,当我们给某项竞赛的优胜者按金银铜牌序的时候。
在这个任务中可能的值只有三种1,2和3。我们用交换的方法把他排成升序的。
写一个程序计算出,给定的一个1,2,3组成的数字序列,排成升序所需的最少交换次数。
PROGRAM NAME: sort3
INPUT FORMAT
Line 1:
N (1 <= N <= 1000)
Lines 2-N+1:
每行一个数字,共N行。(1..3)
SAMPLE INPUT (file sort3.in)
9
2
2
1
3
3
3
2
3
1
OUTPUT FORMAT
共一行,一个数字。表示排成升序所需的最少交换次数。
SAMPLE OUTPUT (file sort3.out)
4
我的题解:
这道题比Castle还简单。首先统计出1,2,3出现次数,记为t[1],t[2]还有t[3]。
则排序后,前t[1]项是1,接下来t[2]项是2……
然后前t[1]项如果不是1,则要把后面的1换到前面来。如果是2,那么就尽量去换前面的1,3就尽量换后面的1。
后面的简单的吧2,和3换过来就好了。
程序:
{
ID: Sinya1
PROG: sort3
LANG: PASCAL
}
{WELCOME TO MY WEBSITE: HTTP://SINYA.YO2.CN/}
{I love my hometown, Swatow, China!!!!!}
{Anyway,I Love You, Kekyang!!!!!}
Program sort3;
Var
{}i,j,n,r:integer;
{}a:array[1..1000]of byte;
{}t:array[1..3]of integer;
Begin
{}Assign(input, ‘sort3.in’); Reset(input);
{}Assign(output, ‘sort3.out’); Rewrite(output);
{}fillchar(t,sizeof(t),0);
{}r:=0;
{}readln(n);
{}for i:=1 to n do begin
{}{}readln(a[i]);
{}{}inc(t[a[i]])
{}end; {输入与统计}
{}j:=t[1];
{}for i:=1 to t[1]do
{}{}if a[i]=2 then begin
{}{}{}inc(r);
{}{}{}repeat
{}{}{}{}inc(j);
{}{}{}until a[j]=1;
{}{}{}a[i]:=1;
{}{}{}a[j]:=2;
{}{}end; {交换1和2}
{}for i:=1 to t[1]do
{}{}if a[i]=3 then begin
{}{}{}inc(r);
{}{}{}a[i]:=1;
{}{}end;
{}for i:=t[1]+1 to n do
{}{}if a[i]=1then
{}{}{}a[i]:=3; {交换1和3}
{}for i:=t[1]+1 to t[1]+t[2]do
{}{}if a[i]=3 then
{}{}{}inc(r); {统计交换2和3所需次数}
{}writeln(r);
{}Close(input);
{}Close(output);
End.